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TECHNICAL NOTES 

The stability of PrandtI-Darcy convection in a vertical porous layer 
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1, I N T R O D U C T I O N  

RECENT years have seen a rapid increase of  interest in the 
influence of non-Darcy effects on convection in fluid-satur- 
ated porous media (see, e.g. refs. [1-7]). These studies have 
been motivated by a desire to model realistic effects such as 
inertial drag which are assumed to be absent in the usual  
Darcy formulation. Forchheimer [8] was the first to present 
a correction to Darcy 's  law for high flow rates,  this takes the 
form of a quadratic velocity term and its effect becomes 
significant when the microscopic Reynolds number  is of  
order unity or higher. A viscous-like term was proposed by 
Brinkman [9] which allows the satisfaction of  the no-slip 
condition. A third modification, which is the subject of  this 
note, is a t ime-dependent velocity term. This corresponds to 
the relaxing of  the infinite Prandtl Darcy number  assump- 
tion, and the presence of  this term means  that  the flow 
field no longer adjusts instantaneously to changes in the 
temperature field or an externally applied pressure gradient. 

In this note the stability of  the flow generated by heating 
a vertical layer of  fluid-saturated porous material from the 
side is considered. Such a configuration is of  considerable 
importance in insulation engineering, e.g. since the onset of  
an instability will greatly enhance the heat  transferred 
through the layer. The layer is assumed to be infinite in extent 
in order to simplify the analysis, but  it should be noted that  
the presence of  endwalls in a finite cavity could modify the 
present results. The infinite layer Darcy-ftow case was treated 
by Gill [10] who showed that the basic flow profiles are stable 
to all infinitesimal disturbances. In a recent paper Georgiadis 
and Cat ton [6] sought  to investigate the effects of  the above 
three modifications to Darcy 's  law. Their conclusion was 
that a finite value of  the Prandt l -Darcy number  is sufficient 
to guarantee the linear instability of  the basic flow. However, 
there is an error in their analysis which renders this con- 
clusion invalid, as shown later. It is the task of  this note, 
therefore, to consider the effect of  a finite Prandt l -Darcy  
number  on Gill's result. Al though the Forchheimer and 
Brinkman terms are neglected here, one has been unable 
to furnish an analytical proof  of  stability/instability. 
One has therefore resorted to numerical methods to 
solve the perturbation equations arising from a simple 
linear stability analysis. Al though every possible combi- 
nation of Rayleigh number, wave number and Prandtl-Darcy 
number  cannot  be considered, the results presented here 
indicate that the basic flow is stable for all Prandt l -Darcy  
numbers.  

2. EQUATIONS OF M O T I O N S  
AND LINEAR STABILITY ANALYSIS 

The flow field confined between two isothermal, imper- 
meable, vertical walls is considered, as shown in Fig. 1. The 
governing non-dimensional  Boussinesq equations are given 
by 

u x + v ~ . + w ~  = 0  (1) 

eu, + u = - P x  (2a) 

ev t + v = - p y  (2b) 

ew, + w = - P z  + RO (2c) 

0 t + UO x "~-I)Oy -If" H,'O z = V 20 (3) 

which are to be solved subject to the boundary conditions 

u = 0 ,  0 =  4-1 o n x =  _+1 (4) 

together with the appropriate periodicity conditions in the 
y- and z-directions. For  the purposes of  this note the equa- 
tions have been nondimensionalized as in Gupta  and Joseph 
[11] except that the reference length and temperature are half  
the channel  width and temperature drop, respectively. In 
equations (2) the inVerse Prandt l -Darcy number  is given by 
e = ~(x /v ) (K/d2) ,  typical values o f  which are fluid and 
medium dependent but  are usually considered to be negli- 
gibly small. Equations (1)-(3) are readily solved to give the 
basic flow profile 

u = v = 0 ,  w = R x ,  p = 0 ,  O = x .  (5) 

In order to analyse the linear stability of  this flow infini- 
tesimal disturbances are introduced by setting 

u = u*, t' = v*, w = R x  + w*, p - p * ,  O ~ x + O* (6) 

in equations (1)-(4). After linearization the equations 
governing the evolution of  the perturbations become 

u * + v * + w *  = 0 (7) 

~u,* + u* = -p~* (8a) 

ev* + v* = - p *  (8b) 

Ew* + w* = - p *  + RO* (8c) 

0* = V20 * - u* - R x O *  (9) 

which are to be solved subject to the boundary conditions 

u * = O * = p * = O  o n x =  _+1 (10) 

where the solutions are assumed periodic in y and z. On 
eliminating v*, w* and p* from equations (7) to (10) and 
setting 

u* = i~f(x) e i(*+*zl+~' 

O* = g ( x )  e i(*+kz)+;~' 

one obtains 

(1 + ~ ) ( f " - ~ 2 f ) +  Sg" = o (l 1) 

g , , _ ( ~ 2  + 2 ) g - - i a ( f +  S x g )  = 0 (12) 

which are to be solved subject to 

f ( +  1) = g ( ±  1) = 0 (13) 

where ~ = (12+k2)  ~/2 is the roll wave number  and R k  = S~.  
Note that  the number  of  parameters has  been reduced from 
four (R, l, k, e) to three (S, a, e) and hence Squire's theorem 
is valid. Another  important  point to note is that any incipient 
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C, D N x N matrices as defined in the text 
half-width of  the layer 
spatial forms of  the disturbances u*, 0* 
N-vectors containing the Fourier coeffÉcients of  
f and 9 
acceleration due to gravity 
critical Grashof  number  (see ref. [6]) 
N × N identity matrix 
permeability 
wave numbers  
truncation level of  the Galerkin expansion 
non-dimensional  pressure 
Rayleigh number ,  ~flKdAT/vt¢ 
modified Rayleigh number ,  Rk/~t 
non-dimensional  time 
half  the temperature difference across the layer 

non-dimensional  velocity components  
non-dimensional  coordinates. 

N O M  ENCLATURE 

Greek symbols 
c~ wave number  
fl coefficient of  thermal expansion of  the fluid 
e inverse Prandtl  Darcy number ,  ~KK/vd 2 
0 non-dimensional  temperature 
~c thermal diffusivity of  the saturated medium 
2 exponential growth rate of  the disturbances 
v fluid viscosity 
~b N x N zero matrix. 

Other symbol 
0 zero vector of  length N. 

Superscripts 
* infinitesimal disturbances 
T transpose. 

instability mus t  take the form of two travelling modes cor- 
responding to a complex pair of  eigenvalues, 2, since setting 
2 = 0 in equations (11) and (12) gives identical equations to 
the Darcy case. 

In only one case can one proceed analytically, namely 

for vertically orientated rolls for which k = 0 and therefore 
S = 0. F rom equation (11) it is easily deduced t h a t f  = 0 and 
that 2 = - c t2 -~n2=  2 for integer n. Hence disturbances of 
the form of vertical rolls decay for all Rayleigh numbers ,  
wave numbers  and values of  e. For all other roll orientations 

0 = - 1  

z 

x=-i x= 1 

FIG. 1. Flow regime and coordinate system. 
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S ~ 0, and equations (11)-(13) must be solved numerically 
since Gill's method [I 1] cannot be applied here. To facilitate 
the solution of  equations (11 ~(13) a simple Galerkin expan- 
sion is used as follows : 

(f,g) = ~ (fn,g,) sin (~nn(x+ 1)) (14) 
n - I  

where N is the truncation level. Since the single derivative in 
equation (11) gives a cosine series each term is re-expanded 
in a sine series. A sine series is also obtained for the xg term 
in equation (12) by using a cosine series for x. Hence one 
obtains the eigenvalue problem 

[ ( - -  (l /e)/  -(I /e)A-tB~ ~ f 
ial - A + i C  / - 2 ( ~  / ) ] ( g ) = O  (15) 

for the growth rate, 2, where f =  (f],fz . . . . .  fu) "f, 
g = (.q~,g: .. . .  ,gN) T, I is the N x N  identity matrix, ~b the 
N x N zero matrix, A = e21+ ~Tr 2 diag (12, 22 . . . . .  N 2) and 
elements bpq, Cpu of  B and C are given by 

bpq {2Spq/~ 2 - q 2 ) ( p + q ° d d )  
= (p+q  even) (16) 

{ (I6/Tr2)S~:p~/(p2--q2) 2 (p + q  odd) (17) 
%9 = (p + q even). 

When e = 0 the numerical scheme breaks down, but for this 
case it is straightforward to find f in terms of  g and obtain 
the simplified system of  equations 

[ ( - A  + iC+ iD) - -2 / ]g  = 0 (18) 

to replace equation (15), where elements deq of  D are given 
by 

"[pZt8S~pq 5 - ~ ~ _ ~ 2 1 1  deq= 2rt__4~z2+ v ( p + q  odd) (19) 

0 (p + q even). 

Eigenvalue problems (15) and (18) were solved using the 
NAG routine F02AJF for various values of S, ~ and e, to find 
the corresponding exponential growth rates, 2. The values 
obtained in this way were checked against those found by 
solving equations (11) and (12) using the boundary value 
problem solver D02HAF. It was found that they were 
extremely accurate and required only a very small fraction 
of  the time taken by D02HAF. 

3. RESULTS A N D  DISCUSSION 

The eigenvalue spectrum for the Darcy flow case, e = 0, is 
displayed in Fig. 2 which confirms the well-known result of  
Gill [10] that the basic flow is linearly stable. It is interesting 
to note that the decay rate of  the most slowly decaying mode 
increases as (S or R) increases. Note also that the vertical roll 
(S = 0) constitutes the most unstable mode even though 
the mode decays, and, in general, the most unstable mode 
corresponds to the one with zero wave number. 

For  non-zero values of  e, the general behaviour of 2 
increases in complexity since there is now available the third 
parameter, e. In Fig. 3 a plot of  - R e  (2) is displayed as a 
function ofe  for the case = = 0.25, S = 10. For small values 

- R e ( X )  
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FIG. 2. Values of  - R e  (2) for Darcy flow, e = 0, as a function of  R for wave numbers e = 0, ~/10, ~/5, 
37c/10. The values were calculated with N = 10: - - ,  stationary modes (Ira (2 )=  0); . . . . .  , travelling 

modes (Im (2) # 0). This convention also applies to Figs. 3 and 4. 
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FiG. 4. Graph of  "~  Re (A) as a function ofe  for c( = ~/4: (a) S = 10; (b) S = 50; (c) S = 200. The results 
were calculated using N = 16 which is sufficient to ensure that the first ten modes are accurate as drawn 
for S = 10, and the first six for S = 200. The 'first' mode is defined to correspond to the curve closest to 
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of  e the values of  2 deviate only slightly from those for the 
Darcy case. As e increases, these curves approach the line 
1 + e2 = 0 which corresponds to singular points of  equations 
(11) and (12). This critical line arises because the time- 
dependent term introduced into the Darcy equations 
causes the term with the highest order spatial derivative 
to have a coefficient which varies and which is zero on the 
critical line if 2 is real. In this sense the present problem is 
similar to the inviscid Orr-Sommerfeld problem. Here, how- 
ever, one has no need to resort to a critical layer analysis 
as 2 becomes complex in order to pass 'a round '  the critical 
line. 

On fixing S and ~, there are only two possible ways for 2 
(for the most  unstable mode) to evolve as e increases : either 
2 asymptotes to the curve e2 = negative constant,  or two 
stationary modes (Im ( 2 ) =  0) coalesce to form a pair of  
travelling modes (Im (2) # 0), which can then pass around 
the critical line, followed by a decoupling of  the modes which 
both eventually asymptote to 2 = constant.  The former 
possibility is not  evident in Fig. 3 and therefore, for a clearer 
representation, one rescales the ordinate by plotting 
- e  Re (2). On using a log-log scaling, both asymptotic forms 
are shown as straight lines, the former having unit  slope and 
the latter being horizontal as is the critical line. These may  
be seen clearly in Fig. 4. 

In Fig. 4 the decrement spectrum is displayed for the three 
cases, c~ = 0.25n, S = 10, 50 and 200. These figures are typical 
of  all those calculated for different values of  ~ and S. It is a 
universal feature of  the results that  when e is small the effect 
o f  increasing either ~, S or both is to decrease Re (2) still 
further, at least for the most  unstable mode ; this is similar 
to the Darcy case as shown in Fig. 2. As e increases the slope 
of  In ( - e  Re (2)) for the most  unstable mode usually remains 
positive and Re (2) is always negative. 

To conclude, one has  demonstrated that non-zero values 
of  the inverse P rand tPDarcy  number  do not  induce insta- 
bilities of  the form of  rolls o f  any orientation. This is also 
true for unphysically large values of  e. The question which 
immediately arises is to ask why the results are at variance 
with those of  Georgiadis and Cat ton [6], who gave an 
expression for the critical Grashof  number  (Grcrit ; equivalent 
to our critical Rayleigh number)  for instability. A careful 
examination of  that  expression and the preceding analysis 
shows that the defining integrals for Grczit contain the 

Grashof  number  itself, and therefore their expression de- 
fines the critical Grashof  number  implicitly. The results 
indicate that such a value does not  exist and that the flow is 
linearly stable. 
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1. I N T R O D U C T I O N  

WITH THE advent o f  sustained space flight, studies related 
to chemical processes in a micro-gravity environment have 
become important.  At low gravity fluid mot ion is often 
governed by forces which are often negligible in the earth 's  
gravitational field. One of  these forces which is expected 
to be important  in a micro-gravity environment is surface 
tension. When a gradient in surface tension exists at the 
interface between two fluid phases, a surface tension driven 

(Marangoni)  flow field may result. The surface tension 
between two fluids is a function of  the temperature and the 
concentration level of  any solute present at the fluid interface. 
Thus,  in the presence of  a gradient in the solute concentration 
or the temperature near a fluid interface, surface tension 
driven flows may  be present. Surface tension (Marangoni) 
effects on droplets have been studied in several works includ- 
ing: Levan [1], Thompson  et al. [2], and Rivkind and 
Sigovtsev [3]. 

The intent of  this work is to demonstrate  that irradiant 


